Delocalizing strain in a thin metal film on a polymer substrate
نویسندگان
چکیده
Under tension, a freestanding thin metal film usually ruptures at a smaller strain than its bulk counterpart. Often this apparent brittleness does not result from cleavage, but from strain localization, such as necking. By volume conservation, necking causes local elongation. This elongation is much smaller than the film length, and adds little to the overall strain. The film ruptures when the overall strain just exceeds the necking initiation strain, eN, which for a weakly hardening film is not far beyond its elastic limit. Now consider a weakly hardening metal film on a steeply hardening polymer substrate. If the metal film is fully bonded to the polymer substrate, the substrate suppresses large local elongation in the film, so that the metal film may deform uniformly far beyond eN. If the metal film debonds from the substrate, however, the film becomes freestanding and ruptures at a smaller strain than the fully bonded film; the polymer substrate remains intact. We study strain delocalization in the metal film on the polymer substrate by analyzing incipient and large-amplitude nonuniform deformation, as well as debond-assisted necking. The theoretical considerations call for further experiments to clarify the rupture behavior of the metal-on-polymer laminates. 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
Ductility of thin metal films on polymer substrates modulated by interfacial adhesion
When a laminate of a thin metal film on a tough polymer substrate is stretched, the metal film may rupture at strains ranging from a few percent to a few tens of percent. This variation in the ductility of the metal film is modulated by the adhesion of the metal/polymer interface. To study this modulation, here we use the finite element method to simulate the co-evolution of two processes: debo...
متن کاملFailure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates
In a previous paper, we have demonstrated that a microcrystalline copper film well bonded to a polymer substrate can be stretched beyond 50% without cracking. The film eventually fails through the coevolution of necking and debonding from the substrate. Here we report much lower strains to failure (approximately 10%) for polymer-supported nanocrystalline metal films, the microstructure of which...
متن کاملEffect of annealing in reduced oxygen pressure on the electrical transport properties of epitaxial thin film and bulk (La1xNdx)0.7Sr0.3MnO3
Related Articles Strain modulated magnetization and colossal resistivity of epitaxial La2/3Ca1/3MnO3 film on BaTiO3 substrate Appl. Phys. Lett. 99, 092103 (2011) Magnetoresistance in epitaxial thin films of La0.85Ag0.15MnO3 produced by polymer assisted deposition Appl. Phys. Lett. 99, 083113 (2011) Natural media with negative index of refraction: Perspectives of complex transition metal oxides ...
متن کامللایه نشانی لایه نازک نانوهیبریدی TEOS-GPTMS روی زیرلایه پلیمتیل متاکریلات
A TEOS-GPTMS nano-hybrid thin film was deposited on the polymethyl methacrylate (PMMA) substrate by a sol-gel dip coating method. Morphology, roughness and surface chemical bonding of the thin films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy(FE-SEM), atomic force microscopy, and Fourier transform infrared spectroscopy methods, respectively. UV-vis spe...
متن کاملPolymer nanocomposite thin film mirror for the infrared region.
Thin film metal oxide coatings have been used commercially as electromagnetic filters from the UV to infrared regions for over half a century. Deposition onto a substrate has typically been accomplished using vapor deposition techniques and more recently sol–gel methods. These coatings provide very good optical and mechanical performance when applied to substrates with similar thermal and mecha...
متن کامل